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ABSTRACT: A split plot experiment (using RCB design) with four replications was conducted, in order to
evaluate the response of some corn hybrids to water stress at field during 2010. Main plots included three
different irrigation treatments (Non-water stress, Middle-water stress and Severe-water stress) and sub plots
included 14 corn hybrids. In this study correlation, regression, path and principal components analysis were
carried out to decide correlations among the agronomic traits and their contributions to seed yield per plant
in some new corn hybrids. Correlation analysis indicated that there was the most significant and positive
correlation between grain yield and row number per ear, grain number per row, ear height and plant height
at the average of irrigation treatments. The results of stepwise regression and path analysis for grain yield
revealed that row number per ear, 300 grain weight, grain number per row and number of leaves made 78
percent of the grain yield variation. The row number per ear had the greatest direct and positive effect on
grain yield per plant. It is concluded that selection for high grain yield corn hybrids in water deficit stress
conditions can be improved through this traits. Factor analysis showed that the first two factors would
explain 78 percent of the total variation. This experiment showed that the hybrids K3647 × K18, SC400 and
SC500 are more tolerant hybrids to water stress than that of other hybrids.
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INTRODUCTION

Plants are constantly challenged with numerous
environmental stresses, both biotic and abiotic. To
survive under such conditions, plants have evolved a
variety of mechanisms to perceive external stimuli and
to transduce the stress signal for activation of the
optimal response to each type of stress. A coordinated
regulation of plant response requires crosstalk between
pathways that are initiated by external cues and
orchestrated through a complex network of signaling
pathways. There is compelling evidence that stress-
responsive genes such as transcription factors or
kinases might function in multiple pathways and also
facilitate crosstalk between different stress signaling
pathways (Quilis et al., 2008; Saibo et al., 2009).
Limited water availability impairs plant growth and is
one of the main issues of future climate changes (Ciais
et al., 2005; Loreto and Centritto, 2008). Because
drought is a common occurrence in many

environments, many perennial plant species have
developed mechanisms to cope with an inadequate
water supply (Arndt et al. 2001). Thus, adaptation and
survival strategies are demanded from plants to persist
in their current habitats. As drought stress mainly
affects the plant carbon balance, in particular,
photosynthesis and respiration, adjustments at the leaf
level are of primary importance, while long-term
adjustments at the whole plant level may then follow
(Chaves et al., 2003; Flexas et al., 2006). Water
scarcity, typically accompanied by increasing salinity,
is the one of the major causes of poor plant
performance and limited crop yields worldwide (Boyer,
1982) and is the single most common cause of severe
food shortage in developing countries. Even in most of
the agriculturally productive regions, short periods of
water deficiency are responsible for considerable
reductions in seed and biomass yields each year
(Eckardt, et al. 2009.

Biological Forum – An International Journal 7(1): 1512-1519(2015)

www.researchtrend.net


Seyedzavar, Norouzi and Aharizad 1513

Global climate change, which is increasing
temperatures worldwide and changing rainfall patterns,
is expected to exacerbate the negative effects of water
deficiency in agriculture (Battisti and Naylor 2009).
Maize is the third most important cereal after wheat and
rice all over the world serving as staple food for many
countries (Frova et al., 1999). Maize crop plays an
important role in the world economy and is valuable
ingredient in manufactured items that affect a large
proportion of the world population. The most serious
non-alive stress factor is that limits the growth and crop
production (Terzi and Asim Kadioglu, 2006). The
pigments can be destroyed by drought, thus causing
damage by water shortage to the photosynthetic device
(Hendry et al., 1987).
Iran lies in a dry and semi-arid area on the earth, its
average annual rain fall is about 230 mm and its falling
dispersion in this area (dry and half dry) doesn't satisfy
the farming needs, and consequently production is
always faced with temporary and constant drought
stress, therefore a suitable management is needed to get
optimum output in half dry areas and increase the
efficiency of land under cultivation (Haydari
Sharifabad, 2005).
Maize grown under semi-arid climate of Iran requires
supplementary irrigation application to maximize the
grain yield. The crop is adapted to tropical, sub-tropical
and temperate areas, but little is known about drought
stress response within tropical maize cultivars. Reports
showed that in semi-arid regions of Iran, drought
declines season length (Magorocosho et al., 2003),
disturb photosynthesis and assimilate remobilization
which finally reduces grain weight (Vaezi and
Ahmadikhah, 2010). It has been shown that water
shortage declines corn canopy height, leaf area index
and root growth (Hirich et al., 2012; Payero et al.,
2006). Corn yield components are controlled by many
genes which react to the lack of water with different
flexibility (Esmailiyan et al., 2008) but it is affected by
the environmental condition, either (Farre et al., 2000).
Grain yield reduction of maize due to the drought
pressure is varied between 1 to 76% depending on the
severity, timing and stage of occurrence (Mostafavi et
al., 2011; Zarabi et al., 2011; Song et al., 2010). Oktem
(2008) found that under water pressure, grain yield was
reduced to 37 percent because of 18 percent grain
weight reduction and 1 percent reduction in the number
of seeds.
Several reports of physiological, morphological and
molecular traits have been suggested for improving the
drought and salinity tolerance of crops that many of
them potentially applicable to maize. Several recent
reviews are available (Barker et al., 2005; Flowers,
2004, Munns, 2002 and Hasan uzzaman and Fujita,

2011). No exact figures on yield and economic losses in
maize due to drought are available. Heisey and
Edmeades (1999) estimated that 20 to 25% of the
global maize planting area is affected by drought in any
given year. In maize, grain yield reduction caused by
drought ranges from 10 to 76% depending on the
severity and stage of occurrence. Drought stress
coinciding with flowering delays silking and results in
an increase of anthesis-silking interval (Bolaòos et al.,
1993); this usually associates with reduction in grain
number and yield (Edmeades et al., 1993).
Productivity is a complex character, and influenced by
many characters and controlled by multiple factors that
interact with genotypes and environmental conditions
(Kashiani et al., 2010; Zilio et al., 2011). For
expression of high levels of production, the corn crop
depends, in addition to proper management techniques,
the interaction of genetic material, with the soil and
climatic conditions (Duvick, 2005). In corn, variations
in the choice of cultivar and the interactions with the
environment may represent half of the productivity
(Cruz, et al., 2005). For the purpose of crop production
and yield improvement, development of drought
tolerant varieties is the best option (Siddique et al.,
2000). Water availability mostly affects growth of
leaves and roots, photosynthesis and dry mater
accumulation (Blum, 1996).
Corn is very susceptible to drought damage due to the
plants requirement for water for cell elongation and its
inability to delay vegetative growth (Heinigre, 2000).
Yield is reduced when evapotranspiration demand
exceeds water supply from the soil at any time during
the corn life cycle. Corn yield is most sensitive to water
stress during flowering and pollination, followed by
grain filling and finally vegetative growth stages
(Lauer, 2003).
Correlation studies are also very useful to plant
breeders for improving drought tolerance in the sense
that, any physiological or yield trait having high
heritability could be used as indirect selection criteria to
improve yield in water-deficit environments. Path
Analysis is a multivariate technique to explain direct
and indirect impacts between variables. Path coefficient
analysis has been being used successfully to illustrate
interrelation between yield and other traits for many
crops such as maize, soybean, field bean and rapeseed
(Khazaei et al., 2010). Different researches have been
conducted for determining the phenotypic and
genotypic correlation between important agronomic
traits and corn yield. However association between
these features and grain yield is vital but computing of
correlation coefficient does not specify the essence of
relationship between features (Vaezi et al., 2000).
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Rosielle and Hamblin (1981) believed that selection
based on yield under stress condition led to selection of
genotypes with low yield in non-stress condition. Blum
et al., (1980) stated that drought stress caused reduction
of genetic variance and yield heritability which restricts
efficiency of selection for yield under stress situation.
Some researchers claimed that selection for higher yield
under non-stress condition caused improvement of this
feature under stress situation and vice versa, selection
for drought tolerance led to yield reduction at sowing in
non-stress condition (Vaezi and Ahmadikhah, 2010).
The main goal of the present research is to recognize

and present the hybrids of maize which withstand the
water deficit situations by having the suitable efficiency

and suitable resistant under the different normal and
stress environments.

MATERIALS AND METHODS

A split plot experiment (using RCB design) with four
replications was conducted in 2010 at the Research
Farm of the Faculty of Agriculture, University of
Tabriz, Iran, in order to determine response of some
corn hybrids to water stress. Irrigation treatments
(NWS: non-water stress, MWS: middle water stress and
SWS: severe water stress) were located in main plots
and 14 corn hybrids were allocated to sub plots.
Hybrids have been listed in the Table 1.

Table 1: Names of maize hybrids studied at different levels of irrigation.

Hybrid No. Name of Hybrids Hybrid No. Name of Hybrids Hybrid No.
Name of

Hybrids

1

2

3

4

5

SC700

SC704

KSC705

SC706

SC702

6

7

8

9

10

SC670

SC647

SC604

K166 x K18

DC370

11

12

13

14

K48xK19

SC500

K3647xK18

SC400

Seeds of corn hybrids were sown by hand on 6 June
2010. Different water stress treatments (I1, I2 and I3;
40, 70 and 120 mm evaporation from class A pan,
respectively) applied after completing the pollination.
Several morphological traits were measured under
control and water stress conditions. Data were recorded
on 10 competitive plants of each plot and grain yield
(kg ha-1) and yield component was calculated for the
entire plot. Some of the studied traits were: Number of
leaves per plant (NLP), 300-grain weight (W300),
number of rows per ear (NRE), number of seeds per
row (NSR), ear length (EL), flag leaf area (FLE), ear
diameter (ED), cob diameter (CD), plant height (PH),
plant dry weight (PDW) and grain yield (GY).
For statistical analysis of each characteristic, Excel,
SPSS and Minitab soft wares were used. Duncan
multiple range test was applied to compare means of
each trait at 5% probability.

RESULTS AND DISCUSSION

Plant breeders work with some yield components
related to yield in the selection programs and it is very
important to determine relative importance of such
characters contributing to yield directly or indirectly.
Correlation and path coefficient analyses can assist to
determine certain characters to be used in the

improvement of the complex character such as yield
(Joshi, 2005).
In the present study, grain yield had a positive-
significant correlation with number of rows per ear
(0.85), number of seeds per row (0.69), number of
leaves per plant (0.68), ear length (0.64) and plant
height (0.58) (Table 2). It was reported that there was a
correlation between grain yield and ear dimension, ear
weight, number of seeds per ear and 1000-grain weight
(Palta et al., 2011; Khazaei et al., 2010). Alvi et al.
(2003) and Najeeb et al. (2009), also found strong
association between grain yield and number of seeds
per row. Results of a number of researches and studies
show that there is a significant positive correlation
between grain yield and the plant height, ear height, ear
diameter, ear cob diameter, number of rows per grain,
number of grain per ear, 1000-grain weight (Nemati et
al., 2009 and Viola et al., 2003). Therefore, these traits
have considerable importance for the increase in grain
yield on maize hybrids (Nemati et al., 2009).
Stepwise regression and path analysis indicated that
number of row per ear (X1), 300-grain weight (X2),
number of seeds per row (X3) and Number of leaves
per plant (X4) explained 83% of the variance in yield
standard deviation (Table 3).
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Shoae Hosseini et al. (2008) in a study using simple
correlations and stepwise regression reported under
water stress, ear diameter, number of seeds per row and
ear length and in normal condition grain depth, number
of seeds per row and plant height were useful for the
determination of an increase in grain yield.
Khayatnezhad et al. (2010) reported that 500-grain

weight had the most positive correlation (r=0.98**)
with grain yield. After this trait, number of seeds per
row and ear length show the most significant
correlation with grain yield (r=0.94** and r=0.89**).
Similar results were also reported for number of seeds
per row (Mohan et al., 2002) and for 100-seed weight
(Venugopal et al., 2003).

Table 2: Correlation coefficients between the traits of maize hybrids in moderate levels of water stress.

Traits W300
(gr)

PH
(cm)

EL
(cm)

ED
(cm)

CD
(cm)

PDW
(gr)

FLA
(cm) NSR NLP NRE

PH (cm) 0.75**

LE (cm) 0.77** 0.88**
ED (cm) 0.75** 0.77** 0.76**
CD (cm) -0.59* -0.36ns -0.55* -0.51ns

PDW (gr) -0.33ns -0.42ns -0.24ns -0.31ns -0.22ns

FLA (cm) 0.77** 0.71** 0.90** 0.69** -0.54* -0.26ns

NSR 0.18ns 0.26ns 0.35ns 0.11ns -0.27ns 0.33* 0.36ns

NLP -0.53* -0.87** -0.58* -0.48ns 0.29ns 0.40ns -0.58* 0.38ns

NRE 0.12ns -0.59* -0.35ns -0.19ns 0.07ns 0.29ns -0.32ns 0.34ns 0.86**
GY (gr) 0.43ns 0.58* 0.64* 0.11ns -0.21ns 0.24ns 0.10ns 0.69** 0.68** 0.85**

ns . *,** : non-Significant, Significant at 0.05 and 0.01 probability level, respectively.

Table 3: Multiple regression analysis for grain yield as dependent variable and the other studied traits as an
independent variable y in maize hybrids on the average stress levels.

Model Regression Adjusted R2 Durbin-Watson

1 Y= -55.57+14.56 X1 0.623

2 Y= -224.08+13.51 X1+2.43 X2 0.750

3 Y= -274.51+11.236 X1+2.15 X2+2.483 X3 0.810

4 Y= -2.862+8.43 X1+2.32 X2+2.34 X3+3.642 X4 0.835 2.42

Y= yield, X1= number of row per ear, X2= 300-grain weight, X3= number of seeds per row and X4= number of leaves per plant.

Path coefficients under water stress revealed that
number of row per ear had the highest effect (0.458) on
total yield followed by 300-grain weight (0.345),
number of seeds per row (0.286) and number of leaves
per plant (0.182), respectively. These traits had high
correlation with yield. Thus, number of row per ear,
300-grain weight, number of seeds per row and number
of leaves per plant may significantly influence grain
yield of corn hybrids (Table 4). Khazaei et al. (2010)
reported that 100-grain weight and number of grains

had the highest direct effective on grain yield.
However, Selvaraj and Nagarajan (2011) on
interrelationship and path coefficient analysis in corn
revealed that direct selection for ear length and number
of rows per ear are effective for yield improvement.
Mohan et al. (2002) studied path analysis on corn
cultivars for grain yield and oil content and reported
that 100-grain weight and ear length had direct effect
on grain yield, in contrast the effect of plant height had
the lowest effect on grain yield.

Table 4: Direct and indirect effects of different characters on grain yield per plant in drought stress
condition.

Grain yield per plant Direct effect
Indirect effect through Correlation with

YieldNRE 300W NSR NLP
Number of Row per Ear

(NRE)
0.458 - 0.054 0.122 0.155 0.790

300-Grain Weight
(300W)

0.345 0.071 - 0.057 0.003 0.477

Number of Seeds per Row
(NSR)

0.286 0.196 0.069 - 0.077 0.629

Number of Leaves per Plant
(NLP)

0.182 0.390 0.005 0.121 - 0.699
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Table 5 shows the mean and standard deviation of the
total mean for each group based on all the studied traits.
In the first group, hybrids had the highest 300-grain
weight, plant height, ear length, flag leaf area and ear

diameter but, these hybrids had minimum plant dry
weight, cob diameter, number of seeds per row, number
of leaves per plant, number of rows per ear and grain
yield.

Table 5: The mean and standard deviation of the total mean on some of the studied traits.

Group
W300

(gr)

PH

(cm)

EL

(cm)

PDW

(gr)

ED

(cm)

CD

(cm)
NLP NRE NSR

FLA

(cm2)

GY

(gr)

1
Mean 77.78 197.67 20.31 110.16 4.92 2.71 11.72 14.02 41.68 237.99 153.18

Deviation of the Mean 3.21 2.72 3.30 -4.04 1.64 -1.35 -6.51 -3.09 -0.85 8.87 -1.26

2
Mean 71.00 182.99 18.49 123.16 4.69 2.81 14.02 15.28 42.69 183.65 158.70

Deviation of the Mean -5.78 -4.90 -5.94 7.27 -2.96 2.43 11.71 5.57 1.54 -15.98 2.28

Total Mean 75.36 192.43 19.66 114.80 4.841 2.747 12.52 14.47 42.04 218.58 155.15

In further evaluation of relations between genotypes
and all studied traits, principal components analysis was
performed (Table 6). Table 7 shows eigenvectors of
studied hybrids for two first components which justified
78% of the variations between data expressed by two
components. The results showed that the first factor had
the great coefficient on 300-grain weight, plant height,
length of ear, flag leaf area, ear diameter and cob
diameter. The second factor had the great coefficient on

plant dry weight, number of seeds per row, number of
leaves per plant, number of rows per ear and grain
yield. By attention to identity of justified traits by each
one of the factors, the first factor was called as the
morphological-growth characteristics and the second
factor was called as the application factor.
The principal components analysis was drawn to
reviewing relationships between variables based on
biplot first and second components (Fig. 1).

Table 6: Principal component analysis on the different traits of maize hybrids.

Eigen valueComponent share (percent)
Cumulative percentage

of the eigenvalues
Component

10.15450.850.8The first Component

5.44127.278.00The second Component

Table 7:  Eigenvector of the first and second components with measured variables in the principal
components analysis.

Fig. 1. Bi-plot of the first component in front of second component for evaluated hybrids.

GY

(Y11)

FLA

(Y10)

NSR

(Y9)

NRE

(Y8)

NLP

(Y7)

CD

(Y6)

ED

(Y5)

PDW

(Y4)

EL

(Y3)

PH

(Y2)

W300

(Y1)
Component

0.0060.2920.046-0.114-0.218-0.2030.266-0.0900.2940.2680.276The first Component

0.4190.0360.3080.3620.295-0.1060.0250.1690.039-0.1750.052The second Component
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The horizontal axis was related to first component and
the vertical axis was related to the second component.
Based on component values, the location of genotypes
and their grouping were determined in top of bi-plot.
Hybrids SC706, SC670, K166 × K18, DC370 and K48
× K19 were placed in area A and had high growth and
yield, while the hybrids SC702 and SC647 were in area
D, and from both factors had the less value and less
application and growth. Hybrid SC500 had the most
value from the yield point of view and was presented as
the most efficient hybrid. Hybrids K3647 × K18 and
SC400 were near the area D and faced with less
reduction in yield. Hybrids SC700, SC704, KSC705
and SC604 were in area C; that is, they were in high
level with growth factors but in low level with the
yield.

CONCLUSION

In the present study, grain yield had a positive-
significant correlation with plant height, ear length,
number of rows per ear, number of seeds per row and
number of leaves per plant. Number of rows per ear had
the highest correlation with grain yield. Multiple
regression analyses determined that number of row per
ear, 300-grain weight, number of grain per row and
Number of leaves per plant explained 83% of the
variance in yield standard deviation. Path coefficients in
water stress condition revealed that number of row per
ear had highest direct effect (0.458) on total yield.
Based on principal components analysis two first
components justified 78% of the variations between
data expressed by two components. By attention to
identity of justified traits by each one of the factors, the
first factor was called as the morphological-growth
characteristics and the second factor was called as the
application factor. Hybrids SC706, SC670, K166 ×
K18, DC370 and K48 × K19 had high growth and
yield, while the hybrids SC702 and SC647 were had the
less value and less application and growth. Hybrid
SC500 had the most value from the yield point of view
and was presented as the most efficient hybrid.
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